Abstract

Out-of-phase boundaries (OPBs) are translation boundary defects characterized by a misregistry of a fraction of a unit cell dimension in neighboring regions of a crystal. Although rarely observed in the bulk, they are common in epitaxial films of complex crystals due to the physical constraint of the underlying substrate and a low degree of structural rearrangement during growth. OPBs can strongly affect properties, but no extensive studies of them are available. The morphology, structure, and nucleation mechanisms of OPBs in epitaxial films of layered complex oxides are presented with a review of published studies and new work. Morphological trends in two families of layered oxide phases are described. The atomic structure at OPBs is presented. OPBs may be introduced into a film during growth via the primary mechanisms that occur at film nucleation (steric, nucleation layer,a-bmisfit, and inclined-cmisfit) or after growth via the secondary nucleation mechanism (crystallographic shear in response to loss of a volatile component). Mechanism descriptions are accompanied by experimental examples. Alternative methods to the direct imaging of OPBs are also presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.