Abstract

One-dimensional (1D) vanadium pentoxide (V2O5) nanofibers (VNF) are synthesized by electrospinning vanadium sol–gel precursors containing vanadyl acetylacetonate and poly(vinylpyrrolidone) followed by sintering. Crystal structure, molecular structure and morphology of electrospun VNF are analyzed using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), selected area diffraction (SAED), X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FT-IR). Single-phase electrospun VNF ∼300–800nm in diameter, 20–50μm long (aspect ratio>50) with porous interconnected fibrous morphology are revealed by FESEM and TEM analysis. Electrochemical properties of the sintered VNF, as a cathode in lithium-ion batteries, explored using cyclic voltammetry (CV), galvanostatic charge/discharge and electrochemical impedance spectroscopy (EIS) give rise to new understandings of the electrochemical processes occurring in these nanofibrous cathodes. Electrospun VNF exhibits initial discharge capacity ∼316mAhg−1 (∼2.2 Li per V2O5) in the voltage range of 1.75 and 4.0V vs. Li/Li+ at 0.1C rate. When cycled at a reduced voltage range of 2.0–4.0V vs. Li/Li+, less phase transitions occur, giving rise to the initial specific capacity of 308mAhg−1 and improved cyclic retention of 74% after 50 cycles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.