Abstract
The objective of this study was to investigate the effects of two compatibilizers, namely maleated polypropylene (PP-g-MA) and maleic anhydride grafted poly (ethylene-co-octene) (EOC-g-MA), on the morphology and thus properties of ternary nanocomposites of polypropylene (PP)/ethylene–octene copolymer (EOC)/clay nanocomposite. In this regard the nanocomposites and their neat polymer blend counterparts were processed twice using a twin screw extruder. X-ray diffraction, transmission electron microscopy, Energy dispersive X-ray spectroscopy, and scanning electron microscopy were utilized to characterize nanostructure and microstructure besides mechanical and rheological behaviors of the nanocomposites. Clay with intercalated structure was observed in EOC phase of the PP/EOC/clay nanocomposite. Better dispersion state of the intercalated clay in EOC phase was observed by adding EOC-g-MA as a compatibilizer. On the other hand, adding PP-g-MA resulted in migration of the intercalated clay from the EOC to the PP and to the interface regions. It was also demonstrated that the elastomer particles became smaller in size where clay was present. The finest and the most uniform morphology was found in the PP/EOC/clay nanocomposite. In addition, the rheological results illustrated a higher complex viscosity and storage modulus for PP/EOC/PP-g-MA/clay nanocomposite in which clay particles were present in the matrix. Mechanical assessments showed improvements in the toughness of the nanocomposites with respect to their neat blends, without significant change in stiffness and tensile strength values. These results highlight a toughening role of clay in the polymer blend nanocomposites studied.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.