Abstract

Ordered porous materials are of great technological interest for use as separation, catalysis, adsorbents, and electronic devices. We report here a fabrication of honeycomb-patterned porous films from fluorescent hyperbranched poly(phenylene vinylene) (hypPPV) by breath figure method and the thermal conversion of this film to macroporous carbon. This hexagonal porous film is very thermally stable and retained its structure at up to >600 °C. After the heating, carbonization of hypPPV occurred, and black porous carbon film was obtained. Additionally, because π-conjugated hypPPV has many vinylene moieties at its terminus, the photo-cross-linking reaction easily proceeds without the collapse of the honeycomb structures. This cross-linking reaction rendered the honeycomb films completely insoluble in organic solvents. Because of the provided high thermal and chemical stability, the honeycomb films are a new class of microstructured materials that is promising for many applications such as durable electrolumine...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call