Abstract

Combing the assisted dispersion strategy of support with the wet chemical reduction method, a novel nano-zero valent iron/microsilica (nZVI/M) composite was successfully fabricated, where the 2D nZVI nanosheets were uniformly anchored and covered on the surface of microsilica. The introduction of microsilica notably relieved the agglomeration effect of nZVI nanosheets, which induced the improvement of specific surface area (45.68 m2/g) and pore volume (0.172 cm3/g), and thereby exposing more active sites for bisphenol A (BPA) removal. The optimized nZVI/M-0.6 displayed the superior catalytic performance in the presence of peroxymonosulfate (PMS) with the degradation rate of BPA reached above 97% within 3 min and a higher constant rate of 0.659 min−1, which was approximately 3.9 times as high as that of nZVI/PMS system. The homogeneously dispersion of nZVI nanosheets on microsilica benefited for the assembly of the pollutants and boosting the kinetics of the catalytic degradation process. As a highly efficient PMS activator, it could well maintain the catalytic activity in different real water samples. The quenching experiments verified that SO4•− played the dominate role for BPA removal. This work offered novel insights for designing and preparing iron-based persulfate activator for wastewater treatment.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.