Abstract

One of the hugely focused areas of research for addressing the world’s energy and environmental challenges is electrochemical water oxidation. Morphological modulation of nanomaterials is essential for producing efficient electrocatalysts to achieve the required results. The purpose can be achieved by controlling synthesis parameters, and this is a key factor which greatly influences the oxygen evolution reaction (OER) performance during electrochemical water splitting. In this study, synthesis of cobalt molybdate (CoMoO4) through a simple and low-cost hydrothermal/solvothermal strategy with tunable morphology is demonstrated. Different morphologies, namely rods-like, buds-like, and sheets-like, referred to as R-CMO, B-CMO, and S-CMO, respectively, have been obtained by systematically varying the solvent media. Their catalytic activity towards OER was investigated in 1.0 M aqueous KOH medium. R-CMO nanoparticles synthesized in an aqueous medium demonstrated the lowest overpotential value of 349 mV to achieve a current density of 10 mA cm−2 compared with other as-prepared catalysts. In contrast, the B-CMO and S-CMO exhibited overpotential values of 369 mV and 384 mV, respectively. Furthermore, R-CMO demonstrated an exceptional electrochemical stability for up to 12 h.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.