Abstract

To determine the number of wide-field, monostratified ganglion cell classes present in the human retina, we analyzed a large sample of ganglion cells by intracellular staining in an in vitro, whole-mount preparation of the retina. Over 1000 cells were labeled by horseradish peroxidase or Neurobiotin; some 200 cells had wide dendritic trees narrowly or broadly stratified within either the inner (ON) or outer (OFF) portion of the inner plexiform layer. Based on dendritic-field size and the pattern and extent of dendritic branching, we have distinguished six wide-field cell groups. The giant very sparse ganglion cells included both inner and outer stratifying cells and were unique both for their extremely large dendritic field (mean diameter = 1077 microm) and extremely sparsely branched dendrites. Four of the cell groups had similarly large dendritic fields, ranging in mean diameter from 737 to 791 microm, but differed in the pattern and extent of dendritic branching, with the number of dendritic branch points ranging from a mean of 33 to 129. Of these four groups, the large very sparse group and the large dense group included both inner and outer stratifying cells, while the large sparse and large moderate groups consisted of inner stratifying cells only. The thorny monostratified ganglion cells were distinct from the other cells in having medium size dendritic fields (mean diameter = 517 microm) and moderately branched, inner stratifying dendritic trees with many thin, spiny, twig-like branchlets. All six groups had medium-size cell bodies, with mean soma diameters ranging from 17 to 21 microm. Though the physiological properties and central projections of human wide-field, monostratified ganglion cells are not known, some of the cells resemble macaque ganglion cells known to project to the lateral geniculate nucleus, the pretectum, or the superior colliculus.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.