Abstract
The system composed of water, sodium dodecyl sulfate, methyl methacrylate, and 2-hydroxyethyl methacrylate, with and without ethylene glycol dimethacrylate as a cross-linking agent was used to investigate the effects of changing from visible-light to thermal polymerization. Thermal polymerization yielded porous solids within the range 20−80 wt % aqueous phase content for systems with and without cross-linker. Microstructures similar to photoinitiated polymers were observed in all ranges analyzed. Closed cell microstructures were found to exist for polymers with aqueous fractions less than 50 wt % for polymers with and without cross-linker. Polymers with aqueous fractions greater than or equal to 50 wt % were found to exhibit an open cell microstructure. These microstructures for the higher aqueous fractions differed from the previously observed morphology in other microemulsion systems. These polymers were found to be porous with polymer droplets interconnected to produce a solid mass. Also, a flakelike a...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.