Abstract

Bright field microscopy and atomic force microscopy techniques are used to investigate morphological properties of synthetic eumelanin, obtained by oxidation of l-DOPA solution, deposited on glass and mica substrates. Deposits of eumelanin are characterized by aggregates with different shape and size. On a micrometric scale, filamentous as well as granular structures are present on glass and mica substrates, with a larger density on the former than on the latter. On a nanometric scale, filamentous aggregates, several microns long and about 100nm wide and high, and granular aggregates, ∼50nm high and 100nm wide, are found on both substrates, whereas point-like deposits less than 10nm high and less than 50nm wide are found on mica substrate. Dynamic light scattering measurements and atomic force microscopy images support the evidence that eumelanin presents only nanometric point-like aggregates in aqueous solution, whereas such nanoaggregates organize themselves according to granular and filamentous structures when deposition occurs, as a consequence of interactions with the substrate surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.