Abstract

We study the morphology of spinodal decompositions (SDs) in mixtures of a liquid crystal and a colloidal particle by solving time-dependent Landau-Ginzburg equations for a conserved order parameter (concentration) and two nonconserved order parameters (orientation and crystallization). We numerically examine the coupling between concentration, nematic ordering, and crystalline ordering in two dimensional fluid mixtures, coexisting a nematic and a crystalline phase. On increasing the concentration of colloidal particles, we have three different SDs: a nematic order-induced SD, a phase-separation-induced SD (PSD), and a crystalline-order-induced SD (CSD). In NSD, the phase ordering can lead to fibrillar and cellular networks of the minority colloidal-particle-rich phase in early stages. In the PSD, we find a bicontinuous network structure consisting of a nematic phase rich in liquid crystal and a crystalline phase rich in colloidal particles. In the CSD, nematic droplets can be formed in a crystalline matrix. Asymmetric mixtures of a liquid crystal and a colloidal particle lead to rich varieties of morphologies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.