Abstract

ABSTRACT This work is a review of the experimental results from the literature for single-component metal and simple metal-oxide particles. Criteria for correlating particle morphology, i.e., whether the particles are solid or hollow, with process parameters and material properties during spray pyrolysis are presented and compared with the data available in the literature. The materials were classified into two categories for which the precursor: (1) melts and (2) does not melt before chemical reaction takes place, and separate criteria were used for each category based on the work of Jayanthi et al. (1993) J. Aerosol Sci. 19:478. In systems where the precursor melts before chemical reaction occurs, e.g., decomposition of nitrates of Mg, Al, Fe, Zn, Pb, Ni, Co, Pd, Mn, Cu, Sr, and Ag, the particle morphology is determined primarily by the densities and formula weights of the reactant and product compounds unless high temperature densification or puffing up of the particles due to gases evolved during the chemical reaction alter the morphology. In systems where the precursor undergoes nucleation to form a solid crust which does not melt before chemical reaction takes place, e.g., Ba(C2H3O2)2, Al2(SO4)3, Zr(C2H3O2)2, and Zn(C2H3O2)2, solubility and density of the precursor as well as the operating temperature are the main factors that affect the product particle morphology. Overall, particle morphologies predicted by the criteria were in agreement with experimental observations reported in the literature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.