Abstract

Potential determinants of motoneuronal morphology were examined by using a sexually dimorphic, steroid-sensitive neuromuscular system in the rat spinal cord. In males, the spinal nucleus of the bulbocavernosus (SNB) innervates the perineal muscles bulbocavernosus (BC) and levator ani (LA), and the dorsolateral nucleus (DLN) innervates the ischiocavernosus muscle (IC). Adult females normally lack these motoneurons and the peripheral targets. Prenatal exposure of females to the androgen dihydrotestosterone propionate (DHTP) partially masculinizes this neuromuscular system and alters moto-neuron-to-muscle specificity, resulting in retained SNB target muscles anomalously innervated by motoneurons in the DLN. Because the morphology of SNB and DLN motoneurons normally differs significantly, the influence of spinal cord location and peripheral target on motoneuron morphology can be directly compared. Injection of cholera toxin conjugated to horseradish peroxidase (CTHRP) into the LA of DHTP-treated females labeled motoneurons predominantly in the SNB. These (SNB-LA) motoneurons in DHTP females were identical in all morphological measures to those of normal males. CTHRP injection into the BC of DHTP females labeled motoneurons in both the SNB and the DLN. SNB-BC motoneurons in DHTP females resembled those of normal males in process number and orientation, but were significantly smaller in dendritic length per motoneuron and in soma size. The DLN motoneurons anomalously projecting to the BC in DHTP females differed significantly from SNB-BC motoneurons in soma size and number and orientation of primary processes. However, these motoneurons were identical in all respects to DLN-IC motoneurons in DHTP females; DLN-IC motoneurons were similar to those of normal males in the orientation of their dendritic arbor, but were significantly smaller in dendritic length, soma size, and number of primary processes. These comparisons make it clear that DHTP selectively affects motoneuronal specificity and morphology in specific motoneuron classes. Further, motoneuronal morphology in the SNB/DLN system appears to be influenced more by spinal cord location than by peripheral target.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call