Abstract
Abstract. Ionograms from a standard vertical-incidence ionosonde chain (nine stations), obtained over a wide range of southern latitudes (in geom.lat. range: 23°–52° S), were digitally scanned at 5-min intervals at nighttime (18:00–06:00 LT) for 13 months (January 2004–January 2005). An important parameter of the F-region, so-called range spread-F (Sr), was for the first time quantified in km. Maximum in Sr was recorded at a sounding frequency of 1.8 MHz for each night and for each ionosonde station. A distinct pattern in the magnitude (in km) and in the percentage occurrence of the range spread-F was present in southern winter only (the June solstice). The sub-auroral region (geom. lat. ≥52° S) is characterised by consistently high spread-F (average Sr≈100 km) on 80–100 per cent of the observed nights. There is a sharp equatorward boundary in the spread-F activity in a latitudinal range: 52°–48° S followed by a midlatitude region (44°–48° S) which exhibits a peak in Sr (≈50 km) in winter only, observed on half of the nights. The midlatitude activity reaches its minimum at 42°–43° S, with Sr less than 20 km on one third of the nights. The low midlatitudes (23°–36° S) are characterised by a strong peak in Sr again in winter, centred at about 30° S (average Sr≈70 km) on 80 per cent of the nights. The pattern becomes largely absent during other seasons particularly in southern summer (the December solstice) when spread-F activity shifts to sub-auroral latitudes. The pattern in the occurrence of spread-F appears to have a global character as the enhanced spread-F activity is observed in the Japanese sector in local summer (i.e. the June solstice). It appears that the midlatitude spread-F minimum is only apparent but not real. It delineates the boundary between aurorally generated spread-F (due to travelling ionospheric disturbances, TIDs) and low midlatitude spread-F whose origin is not known.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.