Abstract

Sea urchin gametes predominate in molecular studies of fertilization, yet relatively little is known of the subcellular aspects of sperm entry in this group. Accordingly, it seemed desirable to make a detailed examination of sperm entry phenomena in sea urchins with the electron microscope. Gametes of the sea urchins Arbacia punctulata and Lytechinus variegatus were used in this study. Samples of eggs containing 2 to 8 per cent oocytes were selected and fixed with osmium tetroxide in sea water at various intervals after insemination. Fixed specimens were embedded in Epon 812, sectioned, and examined with an electron microscope. An apical vesicle was observed at the anterior end of the acrosome. The presence of this structure, together with other observations, suggested that initiation of the acrosome reaction in sea urchin sperm involves dehiscence of the acrosomal region with the subsequent release of the acrosomal granule. Contact and initial fusion of gamete membranes was observed in mature eggs and oocytes and invariably involved the extended acrosomal tubule of the spermatozoon. Only one spermatozoon normally enters the mature egg. The probability of locating such a sperm in ultrathin sections is exceedingly low. Several sperm do normally enter oocytes. Consequently, observations of sperm entry were primarily restricted to the latter. The manner of sperm entry into oocytes did not resemble phagocytosis. Organelles of the spermatozoon were progressively divested of their plasma membrane as they entered the ground cytoplasm of the oocyte fertilization cone. Initiation of the acrosome reaction, contact and initial fusion of gamete membranes, and sperm entry into oocytes of sea urchins conform to the Hydroides-Saccoglossus pattern of early fertilization events as described by Colwin and Colwin (13).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call