Abstract

AbstractQuantum dot light emitting devices (QD‐LEDs) con‐sist of a monolayer of QDs sandwiched between a hole transporting layer (HTL) and electron transporting layer (ETL) of organic materials. These hybrid devices emit with the narrow bandwidth characteristic of the QDs. The precise position of the QD layer, relative to the interface between the ETL and HTL, can affect the quantum efficiency of the device on the scale of 10 nm or less.Motivated by this observation, the exact nature of the morphology of contact printed and self‐assembled QDs on typical organic materials is investigated. The QDs are substantially pressed into the organic material, to a somewhat greater extent when contact printed compared to self‐assembled structures. Measured device characteristics from samples made with the two methods are consistent with these observations (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.