Abstract
The detailed stratigraphic study of the pyroclastic surge units S1, IU, and S3 produced during the most violent phases of the 1982 eruption of El Chichon volcano, contains a complex succession of hydromagmatic events triggered by the interaction of different proportions of magma and external water. Component analyses of the horizons within single units reveal that almost all wet and cohesive horizons contain ash aggregates. Based on their morphology and internal structure four different types of aggregates were distinguished: (a) accretionary lapilli, (b) armored lapilli, (c) irregular aggregates, and (d) cylindrical aggregates. The first three types have been described in the volcanological literature (field and experimental studies); cylindrical forms are reported here for the first time. These hollow cylindrical aggregates consist of concentric layers of crystals and glass fragments set in a finer-grained matrix. They formed around millimeter-size foliage fragments that are locally preserved in the interior of the aggregates as scorched or completely carbonized vestiges. SEM analyses suggest different mechanisms of formation for the four types of aggregates. Irregular aggregates and armored lapilli formed nearly instantaneously, whereas accretionary lapilli and cylindrical aggregates resulted from progressive aggregation of ash in different regions of the eruptive cloud.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.