Abstract

This study investigated the morphological features, growth, and meat yield performance of Pekin (P), Nageswari (N), and their reciprocal F<sub>1</sub> crossbreds (P♂×N♀ and N♂×P♀). A total of 301-day-old ducklings were reared in four different pens up to 20 weeks of age under intensive management conditions. Feeding and management practices were similar for all individuals throughout the experimental period. The morphology and plumage pattern of F<sub>1</sub> crossbreds were similar to those of indigenous Nageswari ducks because of the dominant inheritance of the extended Black allele (E locus). Genotype had significant differences (<i>P</i>&lt;0.05) among the four genotypes in morphometric measurements, except wing and shank length. Growth performance was highly significant among the four genotypes (<i>P</i>&lt;0.001) from one-day to 12 weeks of age. The average live weights of P, N, P♂×N♀ and N♂×P♀ crossbred genotypes at 12 weeks of age were 2038.35±29.74, 1542.44±33.61, 1851.85±28.59 and 1691.08±27.80 g, respectively. Meat yield parameters varied significantly (<i>P</i>&lt;0.05) among the different genotypes for all studied traits, except for liver and gizzard weight. Moreover, no significant differences (<i>P</i>&gt;0.05) were observed between P and P♂×N♀ crossbred for important meat yield traits such as hot carcass weight, dressing%, back half weight, drumstick with thigh weight and breast meat weight. Remarkably, the P♂×N♀ crossbreed possesses 50% native inheritance, which contributes to better adaptation in a hot-humid environment. Our results revealed that the P♂×N♀ genotype could be suitable for higher meat production with better adaptability in the agro-climatic conditions of Bangladesh.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.