Abstract

Ion diffusion kinetics, depending on the size, tortuosity, connectivity of the channels, greatly affects the rate performance of the electrodes. Two-dimensional materials (2DMs) has emerged as promising electrode materials in the past decades. However, the applications of 2DMs electrodes are limited by the strong restacking problem, which leads to a poor rate capability. In this work, we for the first time mediated the morphology of molybdenum disulfide (MoS2) nanosheets via a facile coagulation method; abundant sheet crumples were induced, which greatly enhance their surface accessibility and thus benefit the ion diffusion kinetics. Consequently, the crumpled-MoS2 electrodes follow a capacitive Na-ion charge-storage mechanism to a large extent. Importantly, we demonstrate the special role of organic cations in the inter-sheet assembly configuration, in sharp contrast with that of alkali/alkaline-earth ones. We propose that organic cations cause edge/face contact of the sheets, instead of the face/face contact, thus affording a house-of-cards structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.