Abstract
Variation in the chemical composition of wood cell walls has a significant influence on the properties of wood plastic composites (WPCs). This study investigated the effect of removal of hemicellulose and/or lignin on the mechanical properties and dimensional stability of WPCs. Four types of wood particles with various compositions including native wood flour (WF), hemicellulose-removed particle (HR), holocellulose (HC), and α-cellulose (αC) were prepared and compounded with high density polyethylene (HDPE) in an extruder, both with and without maleated polyethylene. Injection molding was used to make test specimens. The HR-based composites exhibited the best water resistance. The HC-based composites obtained a greater tensile modulus but a lower water resistance. The highest values for tensile strength, elongation at brake, toughness, and impact strength were achieved by the composites filled with αC.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.