Abstract

Abstract In this work the microstructure of multilayer blown films consisting of a core layer placed between two external ones is studied. The core layer is a blend with 70 ° (w/w) of a homopolypropylene PP and 30 ° of a metallocene-catalyzed ethylene-octene copolymer mEOC (LLDPE or VLDPE), whereas the external symmetrical layers are composed of LLDPE or they have the same composition as the core layer. The PP and PE crystalline phases formed during the film blowing were investigated by thermal analysis, mechanical properties, TEM morphology and X-ray diffraction pole figures. These films successfully combine the high mechanical strength of PP with the quasi-isotropic behavior of blown PE. Multilayer film containing PP/mEOC blends, particularly blends of PP70/LLDPE30, show better balanced tensile properties when compared at crossed directions. The presence of VLDPE in the blends shifts downwards the melting and crystallization temperatures and crystallinity of PP. X-Ray pole figures suggest the occurrence of epitaxial crystallization of the PE phase upon the PP crystals in these PP/mEOC blend films.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.