Abstract
Cu-Ag filamentary microcomposites with different Ag contents were prepared by cold drawing and intermediate heat treatments. The microstructure characterization and filamentary distribution were observed for two-phase alloys under different conditions. The effect of heavy drawing strain on the microstructure evolution of Cu-Ag alloys was investigated. The results show that the microstructure components consist of Cu dendrites, eutectic colonies and secondary Ag precipitates in the alloys containing 6%∼24% (mass fraction) Ag. With the increase in Ag content, the eutectic colonies in the microstructure increase and gradually change into a continuous net-like distribution. The Cu dendrites, eutectic colonies and secondary Ag precipitates are elongated in an axial direction and developed into the composite filamentary structure during cold drawing deformation. The eutectic colonies tend to evolve into filamentary bundles. The filamentary diameters decrease with the increase in drawing strain degree for the two-phase alloys, in particular for the alloys with low Ag content. The reduction in filamentary diameters becomes slow once the drawing strain has exceeded a certain level.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.