Abstract

Solid state sintering, liquid phase and cooling stages play different roles in determining the final morphology and composition of cermets, especially the well-known core-rim structure. In this work, TiC-(5–25wt%)WC-11Mo2C-18(Ni-Co) cermets were prepared and sintered by different sintering schedules. Morphology evolution and rim phase composition during sintering from 1250°C to 1600°C were investigated. Effects of sintering stages on the final morphology of cermets were also studied. It was shown that submicron (Ti, W, Mo)C grains tend to precipitate in binder during the cooling for cermets with high WC content. After the formation of outer rims during liquid sintering stage, interface reaction began to take effect between the rims and core. Coreless (Ti0.76, W0.13, Mo0.11)C ceramic grains would be formed under high temperature (1600°C) for TiC cermets with 25% WC. Long time sintering at solid state favored the formation of black core-thick inner rim and bright core-grey rim phases, while cooling near the melting point could result in submicron bright particles. This study provided not only a better view of the formation of rim-core structure but also an easier way to control the final morphology of cermets via reasonable changing the sintering cycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.