Abstract
We report on a study of morphology evolution following de-lithiation of Li-Pb alloys, produced by the electrochemical lithiation of Pb particulate and sheet electrodes. Electrochemical titration and time of flight measurements were performed in order to determine the intrinsic diffusivity of Li, , as a function of alloy composition, which ranged from 10−12–10−10 cm2s−1. Morphology evolution was studied under conditions of galvanostatic and potentiostatic dealloying. For the particulate electrodes, we observed dealloyed morphologies corresponding to Kirkendall voids, negative dendrites, void nodules and conventional bicontinuous nanoporous structures. In the case of Pb sheets, similar dealloyed morphologies were obtained under galvanostatic dealloying conditions, however, in the case of potentiostatic dealloying, we did not observe the formation of large volume bicontinuous nanoporous structures. For Pb sheets lithiated to a composition corresponding to the Li8Pb3 phase and galvanostatically dealloyed at current densities ∼1 mAcm−2, voltage oscillations were observed with periods of 70–90 s and amplitudes ranging from 20–130 mV. Current oscillations were also observed for potentiostatic dealloying at 1 V vs Li+/Li. The possible mechanism of these oscillations is discussed and attributed to a salt film precipitation and lift-off process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.