Abstract

Ni-doped ZnO nanostructures were synthesized in situ through a pulsed-electrodeposition-assisted chemical bath deposition method, and the optical and magnetic properties of the nanostructures were studied. It was found that the morphology of the nanostructures evolved from a rodlike to a sheetlike structure because of the different growth modes, and a growth mechanism is proposed to explain these findings. A relatively strong UV emission was observed for the nanorods, whereas a relatively strong visible emission was seen for the nanosheets. Ni was successfully doped into the ZnO wurtzite lattice structure as revealed by X-ray diffraction and X-ray photoelectron spectroscopy and also verified by the cathodoluminescence characterization. Room-temperature ferromagnetism was also observed in the Ni-doped ZnO nanostrucures. The results are helpful to tailor the physical properties of ZnO by changing its morphology and composition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call