Abstract
The influence of growth temperature induced phase segregation and crystallinity in ZnPc:C60 blend films on the charge generation and recombination dynamics is investigated with optical-pump terahertz-probe spectroscopy. While an ultrafast photo-induced charge generation process is observed for all morphologies, a subsequent sub-nanosecond photoconductivity rise depends on crystallinity and phase segregation. For higher intensities, the signal is dominated by a morphology-dependent bimolecular recombination process. High local mobilities of minimal μ ∼ 0.3 cm2/Vs are found. The increase of photoconductivity with film growth temperature correlates with formerly observed device photocurrent improvements.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.