Abstract
The morphology development in dilute and semi-concentrated blends (2 and 15 wt% disperse phase) of viscoelastic polymers is studied during flow in dies. In the entrance region the droplets deform into fibrils. In the die itself some of the fibrils can break up depending on their shear history and hence on their radial position. The morphology at the exit of the die is investigated by quenching the extrudate and visualizing the structure via scanning electron microscopy (SEM). For fibrils moving along the die axis, the theory of Tomotika for break-up of a fibril in a quiescent matrix describes the observations satisfactorily. Fibrils flowing off center undergo a shearing flow in the die, which could have an effect on the growth of the Rayleigh disturbances that cause break-up. It is observed that during flow break-up still occurs via Rayleigh instabilities. As a first approximation the theory of Tomotika also predicts the break-up of fibrils flowing off center, if the viscosity at the relevant shear rate is used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.