Abstract

ABSTRACTMorphology development of crystallizable polymer blends has been investigated using optical microscopy, thermal analysis, and vibrational spectroscopy. The blends studied involve crystallizable polyesters of poly(hexamethylene adipate) (PHMA) and poly(hexamethylene sebacate) (PHMS) and non-crystallizable poly(propylene glycol) (PPG). Although these polyesters possess similar chemical structure, they exhibit different phase behavior. Ternary blends including a high glass transition temperature (Tg) component were also studied. Crystallization kinetics in these blends was obtained utilizing Fourier transform infrared spectroscopy. Micro-Raman spectroscopy capable of achieving high spatial resolution (1 μm2) revealed detailed morphological differences in the phase-separated structures. This technique made possible for the first time characterization of the chemical composition of the blends and distribution of crystallites. The role of the third relative immobile component significantly changed both chemical distribution and the degree of crystallinity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call