Abstract

The morphology of nanomaterials affects their properties and further their applications. Herein, CuO nanomaterials with different morphologies are synthesized, including CuO nanostrips, nanowires and microspheres. After their characterization by means of electron microscopy and X-ray powder diffraction, these CuO nanomaterials are further mixed with graphene nanoplates (GNP) to explore their performance towards electrochemical detection of glucose and tetrabromobisphenol A (TBBPA). Among three composites, the composite of CuO nanostrips and GNP exhibits the largest active surface area, the lowest charge transfer resistance, and the highest accumulation efficiency toward TBBPA. Meanwhile, this composite based non-enzymatic sensor shows superior performance for the glucose monitoring. Since these sensors for the monitoring of both glucose and TBBPA possesses long-term stability, high reproducibility, and wide linear ranges and low detection limits, this work provides a strategy to tune the sensing performance of nanomaterials by means of tailoring the morphologies of nanomaterials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call