Abstract

The linear and nonlinear optical parameters and morphologic dependence of CsPbBr3 nanocrystals (NCs) are crucial for device engineering. In particular, such information in asymmetric nanocrystals is still insufficient. We characterized the OPLA (σ1) and TPA cross sections (σ2) of a series CsPbBr3 nanocrystals with various aspect ratios (AR) using femtosecond transient absorption spectroscopy (TAS). The σ1 presents a linear volume dependence of all the samples, which agrees with the previous behavior in CsPbBr3 QDs. However, the σ2 values do not exhibit conventional power dependency of the crystal volume but are also modulated by the shape-dependent local field factors. In addition, the local field effect in CsPbBr3 NCs is contributed by their asymmetric morphologies and polar ionic lattices, which is more pronounced than in conventional semiconductor NCs. Finally, we revealed that the lifetimes of photogenerated multiexcitonic species of those nanocrystals feature identical morphology independence in both OPLA and TPA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.