Abstract
In the field of organic solar cells, it has been generally accepted until recently that a difference in band energies of at least 0.3 eV between the highest occupied molecular orbital (HOMO) level of the donor and the HOMO of the acceptor is required to provide adequate driving force for efficient photoinduced hole transfer due to the large binding energy of excitons in organic materials. In this work, we investigate polymeric donor:non-fullerene acceptor junctions in binary and ternary blend polymer solar cells, which exhibit efficient photoinduced hole transfer despite negligible HOMO offset and demonstrate that hole transfer in this system is dependent on morphology. The morphology of the organic blend was gradually tuned by controlling the amount of ITIC and PC70BM. High external quantum efficiency was achieved at long wavelengths, despite ITIC-to-PC70BM ratio of 1:9, which indicates efficient photoinduced hole transfer from ITIC to the donor despite an undesirable HOMO energy offset. Transient absorption spectra further confirm that hole transfer from ITIC to the donor becomes more efficient upon optimizing the morphology of the ternary blend compared to that of donor:ITIC binary blend.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.