Abstract
We report a novel stimuli-responsive fluorescent material platform that relies on an evocation of aggregation-induced emission (AIE) from tetraphenylethylene (TPE)-based surfactants localized at one hemisphere of biphasic micro-scale Janus emulsion droplets. Dynamic alterations in the available interfacial area were evoked through surfactant-induced dynamic changes of the internal droplet morphology that can be modulated as a function of the balance of interfacial tensions of the droplet constituent phases. Thus, by analogy with a Langmuir-Blodgett trough that enables selective concentration of surfactants at a liquid-gas interface, we demonstrate here a method for controllable modulation of the available interfacial area of surfactant-functionalized liquid-liquid interfaces. We show that a morphology-dependent alteration of the interfacial area can be used to evoke an optical signal, by selectively assembling synthesized TPE-based surfactants on the respective droplet interfaces. A trigger-induced increase in the concentration of TPE-based surfactants at the liquid-liquid interfaces results in an evocation of aggregation-induced emission (AIE), inducing an up to 3.9-fold increase in the measured emission intensity of the droplets.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.