Abstract

Biodegradable poly(e-caprolactone) (PCL)/thermally reduced graphene (TRG) nanocomposites were prepared via a solution mixing method at low TRG loadings in this work. Transmission electron microscopy and high resolution transmission electron microscopy observations reveal that a fine dispersion of TRG has been achieved throughout the PCL matrix. Scanning electron microscopy observation shows not only a nice dispersion of TRG but also a strong interfacial adhesion between TRG and the matrix, as evidenced by the presence of some TRG nanosheets embedded in the matrix. Nonisothermal melt crystallization behavior, isothermal melt crystallization kinetics, spherulitic morphology, and crystal structure of neat PCL and the PCL/TRG nanocomposites were studied in detail with various techniques. The experimental results indicate that both nonisothermal and isothermal melt crystallization of PCL have been enhanced significantly by the presence of TRG in the nanocomposites due to the heterogeneous nucleation effect; ho...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.