Abstract

LiCoPO4 is a cathode material for 5V lithium ion batteries, but in practice it often suffers from the poor electrochemical performance due to its intrinsically slow ionic diffusion. Herein, various LiCoPO4 materials with different morphology, including unstructured nanoparticle, nanorod and microrod shape, have been synthesized by solvothermal methods and a subsequent annealing process in air. Electrochemical analysis shows that the controllable morphology has an influence in electronic and ionic pathways, thus affects the electrochemical performance. The nanorod shape LiCoPO4 shows the largest discharge capacity, the best rate capability and best cycling stability. Furthermore, the apparent Li+ ion diffusion coefficients of LiCoPO4 samples were determined to investigate the influence of particle shape and the orientation on the Li+ ions migration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call