Abstract

In this paper, we reported the morphology controllable synthesis of hierarchical WO3 nanostructures, i.e. nanorods, nanospheres and nanoflowers, via a facile hydrothermal route. All the obtained WO3 nanostructures were characterized by X-ray powder diffraction (XRD), scanning electron microscopy (SEM), and Brunauer-Emmett-Teller (BET), respectively. A possible growth mechanism for the three various nanomaterials was proposed in detail. WO3 based gas sensors were fabricated with the synthesized nanomaterials and the gas sensing performances to acetylene (C2H2), one of the fault characteristic gases dissolved in power transformer oil, were systematically measured. It was found that the sensor based on nanosheet-assembled nanoflowers with largest surface (56.74 m2g−1) exhibits the highest sensing performance including gas response (32.31) and response-recovery time (12 s, 17 s) to 200 ppm C2H2. The results indicate that WO3 sensing materials could be a promising choice for synthesizing high-performance C2H2 sensors for the judgement of the early latent faults of the oil immersed transformer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.