Abstract

Solvent engineering has been considered a reliable process for the fabrication of pinhole-free and highly crystalline perovskite thin films. Recently, green solvents have received immense attention, as the toxic antisolvents used in the conventional fabrication process cause environmental and health hazards. In this regard, ethyl acetate (EA) is a promising environmentally friendly antisolvent. Here, we present the fabrication of perovskites with controlled morphologies by changing the composition of the perovskite and the volume of EA in ambient humidity. The incorporation of [HC(NH2)2]PbIBr2 into a CH3NH3PbI3 matrix results in a grain size up to ~1.5 μm. This induces a considerable reduction of trap density, leading to the suppression of charge recombination and, consequently, improvement in the photoluminescence characteristics. The resulting power conversion efficiencies (PCEs) of the optimized devices are 20.93% and 19.51% for active areas of 0.12 cm2 and 0.7 cm2, respectively. The reduced diffusion of moisture along grain boundaries improves device stability. Further, by virtue of the excellent humidity resistance of EA, the film morphologies obtained at high relative humidity (50%) are similar to those obtained under dry conditions, exhibiting an impressive PCE of 20.11%. We believe that our optimized fabrication process using EA can be extended to other green antisolvent systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.