Abstract

We present an efficient synthesis of a modified carbon nitride photocatalyst by using supramolecular complexes of cyanuric acid, melamine, and 2,4-diamino-6-phenyl-1,3,5-triazine as precursors. We combined a self-templating approach for morphology control with the modification of photophysical properties by altering the chemical structure of the material. The resulting carbon nitrides exhibit high surface areas, defined morphologies, and a strong enhancement of light absorption in the visible-light region. A detailed analysis shows that the ratio changes of the three raw monomers resulted in different carbon nitride morphologies, absorption, and emission properties, along with the incorporation of different numbers of phenyl groups in the resulting carbon nitride structures. The modified carbon nitrides exhibit superior activity in the photodegradation of rhodamine B, up to 16 times that of bulk carbon nitride. The pyrolysis of rationally chosen supramolecular hydrogen-bonded precursors constitutes a synthetic pathway for the simple one-pot preparation of efficient, metal-free carbon nitride photocatalysts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.