Abstract

Abstract The effects of processing parameters on the morphology change in a Si deposit recovered by means of molten salt electrorefining are evaluated using electrochemical techniques such as cyclic voltammetry and chronopotentiometry at 800°C. It was found that concentration of K2SiF6 and current density were important parameters in determining deposit size. Higher concentrations of K2SiF6 were effective in coarsening the silicon deposit and decreasing the cell potential. Silicon nanofiber was recovered at 5 wt% of K2SiF6 whereas dense particles were prepared at 30 and 50 wt% of K2SiF6. The morphology of the Si deposit was determined by the concentration of Si in the electrolyte which is related to the formation of crystal and growth of Si. The formation mechanism of the Si deposit was interpreted by using high resolution TEM as well as electrochemical properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.