Abstract

Morphology, phase composition, and molecular mobility for a series of semicommercial gel-spun UHMWPE fibers were studied using a combination of WAXS, SAXS, and 1H solid-state NMR methods. The fibers show uncommon for this type of fibers decrease in the break load with increasing draw ratio, whereas their modulus and the tenacity reach very high ultimate values. The X-ray and NMR methods have provided complementary information about the fiber morphology and structural reorganizations occurring at the final stage of the fiber drawing. The results suggest that the fiber morphology can be described by a mixture of crystalline fibrils with long period of ∼35–45 nm, as shown by SAXS, and large, so-called, chain-extended crystals. The presence of large crystals with embedded defects is shown by NMR. The drawing causes increase in the crystallinity from ∼89 to ∼96 wt % and in chain orientation, while the long period of fibrils and the break load of fibers surprisingly decrease. The decrease in the long period wit...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.