Abstract

Particle size, aspect ratio (AR, defined here as major over minor dimension), orientation and volume fraction have been measured for a stream of pulverized biomass particles undergoing devolatilization. Milling of raw biomass for thermochemical conversion yields elongated particles with high AR. Particle shape affects the heat and mass transfers and motion of particles within a jet, potentially shifting the particle group regimes. Therefore, the effects of carrier gas flow and fuel AR on the devolatilization behavior of biomass particles streams have been addressed experimentally. Two shapes of dried Norwegian Spruce have been used: one nearly equant (AR = 1.8 ± 0.64) and the other elongated (AR = 3.8 ± 2.9), both derived from the same sieve size of 200–250 μm. Experiments were performed in a laboratory-scale flat-flame assisted laminar drop tube reactor, where similar mass flows of particles (10–16 g⋅h−1) were injected with two different flow rates of CO2 to a high temperature flame zone (methane flame at O2-to-fuel equivalence ratio of λ = 0.63). Time and space-averaged measurements of particle morphology and velocity during conversion were obtained with 2D particle tracking velocimetry (PTV) together with image analysis. Carrier gas flow acted as thermal ballast, affecting the heating rate to the gas and particles. Heterogeneity in morphological changes was observed, and the behavior was affected by heating rate, particle shape and carrier gas flows. This paper describes phenomena relevant for the understanding of biomass devolatilization under very fast heating rates, such as shrinking, transient swelling, spherodization and lateral migration, and relates them to differences in heating rate and particle shape.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.