Abstract

Magnesium antimonide (Mg3Sb2) is a promising thermoelectric compound utilized for thermoelectric power generation. We have found out that the Mg3Sb2 compound can be made from Mg and Sb powder mixture via the combustion synthesizing reaction. In this study, we manufactured the compounds from the compacted bodies with different Mg fractions between 60.0 and 75.0 at% in an argon gas flow at 650°C for 1 hour via the combustion synthesis process. Morphology, porosity, phases and thermoelectric properties (electrical resistivity and Seebeck coefficient at room temperature to 500°C) were investigated for the manufactured samples. All samples manufactured with different Mg fractions mainly consisted of Mg3Sb2 and became foamed bodies with a porosity between 50 and 70%. The thermoelectric properties changed with the Mg fraction. The maximum power factor of 42.1 µW/mK2 at 488°C was obtained in the foamed body with the Mg fraction of 64 at%. The dimensionless figure of merit (ZT) of the sample was also estimated using the thermal conductivity, which was calculated considering its large porosity. The maximum dimensionless figure of merit (ZTmax) would be 0.13 at 488°C.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.