Abstract
The morphology and structure of aerosol carbon encapsulated metal nanoparticles (CEMNs) of various transition metals (anode; Ti, Cu, Zn, Mo, Pd, W, Pt, or Au) formed by ambient spark discharge at the same electrical operating specifications were analyzed. CEMNs were produced with aggregated carbon particles, and their yields and sizes varied according to the metal-to-carbon fraction of each discharge relating to the ionization potential of the electrode material. Each encapsulated metal had natural crystallinity for all discharges, but carbon graphitization for the Mo-C and W-C configurations, which have relatively small differences in melting temperature between the materials, was particularly weak. An empty zone in the carbon shell was also detected in the CEMNs because of the difference in density between the molten and solid phases of the core metal during encapsulation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.