Abstract

This paper is concerned with an investigation of the characteristic features in the structural perfection of sapphire crystals grown by the Stepanov method. It was shown that the formation of the mosaic grains was considerably dependent on the growth rate. When growing tubular shaped crystals the defect density is relatively insensitive to the growth rate. The structural perfection of shaped sapphire depends on the ratio of the emitting outer surface area to the volume of the crystal. Growth of sapphire shapes occurs by addition of separate atoms and also by the joining of the complexes first formed in the melt before the crystallization front. Upon incoherent crystal twinning, formation of dislocations and boundaries with small angle misorientations takes place. The observed features in the morphology and the structural perfection of shaped sapphire obtained by the Stepanov technique are caused by the considerable differences in crystallization conditions characteristic of this method. These differences result in a change in the growth mechanism.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.