Abstract
The heterogeneous morphology of current silica monoliths hinders this column type to reach its envisioned performance goals. We present a new generation of analytical silica monoliths that deliver a substantially improved separation efficiency achieved through several advances in monolith morphology. Analytical silica monoliths from the 1st and 2nd Chromolith generation are characterized and compared by chromatographic methods, mercury intrusion porosimetry, scanning electron microscopy, and confocal laser scanning microscopy. The latter method is instrumental to quantify morphological differences between the monolith generations and to probe the radial variation of morphological properties. Compared with the 1st generation, the new monoliths possess not only smaller macropores, a more homogeneous macropore space, and a thinner silica skeleton, but also radial homogeneity of these structural parameters as well as of the local external or macroporosity. The 66.5% reduction in minimum plate height observed between silica monoliths of the 1st and 2nd Chromolith generation can thus be attributed to two key improvements: a smaller domain size at simultaneously increased macropore homogeneity and the absence of radial morphology gradients, which are behind the considerable peak asymmetry of the 1st generation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.