Abstract
Dewetting phenomena produce interesting patterns that may impart new properties to solid surfaces. Sodium dodecyl sulfate (SDS) and dodecyltrimethylammonium bromide (DTAB) aqueous solutions, dried on mica surfaces under different drying conditions, undergo dewetting events forming structured deposits that were imaged by scanning electron microscopy (SEM), atomic force (AFM) and Kelvin force microscopy (KFM). Dry SDS, in most situations, displays long branched stripes formed due to fingering instability, while DTAB undergoes stick-slip motion forming patterns of parallel continuous or split stripes. In both systems, independently of drying conditions, surfactants pack forming lamellar structures, but with different orientations: SDS lamellae are aligned parallel to the substrate whereas DTAB lamellae are normal to the mica plane. Electric potential maps of SDS obtained by KFM show well-defined electrostatic patterns: surfactant layers deposited on mica are overall negative with a larger excess of negative charge in the interlamellar space than in the lamellar faces.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.