Abstract
A coarse-grained model previously used to simulate Nafion using dissipative particle dynamics (DPD) is modified to describe sulfonated Diels-Alder poly(phenylene) (SDAPP) polymers. The model includes a proton-hopping mechanism similar to the Grotthuss mechanism. The intramolecular parameters for SDAPP are derived from atomistic molecular dynamics (MD) simulation using the iterative Boltzmann inversion. The polymer radii of gyration, domain morphologies, and cluster distributions obtained from our DPD model are in good agreement with previous atomistic MD simulations. As found in the atomistic simulations, the DPD simulations predict that the SDAPP nanophase separates into hydrophobic polymer domains and hydrophilic domains that percolate through the system at sufficiently high sulfonation and hydration levels. Increasing sulfonation and/or hydration leads to larger proton and water diffusion constants, in agreement with experimental measurements in SDAPP. In the DPD simulations, the proton hopping (Grotthuss) mechanism becomes important as sulfonation and hydration increase, in qualitative agreement with experiment. The turning on of the hopping mechanism also roughly correlates with the point at which the DPD simulations exhibit clear percolated, hydrophilic domains, demonstrating the important effects of morphology on proton transport.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.