Abstract

ABSTRACTA novel hybrid containing graphene oxide (GO) and montmorillonite (MMT) was first synthesized by solution reaction. Then shape memory thermoplastic polyurethane (TPU) composites incorporating MMT–GO hybrid was fabricated via melt blending. Infrared spectra indicated that GO and MMT have been combined together through chemical hydrogen bonding. Tensile tests showed that MMT‐GO hybrids provided substantially greater mechanical property enhancement than using MMT or GO as filler alone. With only 0.25 wt % loading of MMT–GO hybrid (the mass ratio of MMT:GO is 1:1), there was a relatively high improvement in tensile properties of TPU composites, compared with those of TPU/GO and TPU/MMT composites at the same filler content. Thermal analysis indicated that MMT‐GO hybrids enhanced the thermal decomposition temperatures of TPU composites. Shape memory property tests showed that the shape fixing rate of TPU composites was effectively enhanced by incorporating MMT–GO hybrid. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018, 135, 46149.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call