Abstract

Nanocomposites reinforced with graphite platelets were compared to those with functionalized graphite sheets (FGS) prepared by partial pyrolysis of graphite oxide. Melt dispersion in poly(ethylene-2,6-naphthalate) (PEN) was quantified using a range of characterization techniques: electron microscopy, X-ray scattering, melt rheology, electrical conductivity, gas barrier, and mechanical properties. Conductivity percolation was obtained with as little as 0.3 vol % FGS, whereas 3 vol % was required for graphite. The threshold concentrations of FGS and graphite for rigidity percolation determined with melt rheology were in good agreement with conductivity percolation. Hydrogen permeability of PEN with 4 wt % FGS was decreased by 60% while the same amount of graphite reduced permeability only 25%. Structural differences between graphite and FGS were characterized with atomic force microscopy (AFM), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS). The highly exfoliated morphology of FGS was maintained in the composites as revealed by electron microscopy and X-ray scattering while graphite layers remained stacked together even after melt processing. Even though the tensile stiffness and dimensional stability of PEN were improved, the extent of reinforcement with FGS for these two properties was not as significant. This was attributed to the wrinkled structure of FGS and atomistic defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.