Abstract

We successfully prepared luminescent electrospun (ES) fibers from the polymer blends of diblock poly[2,7-(9,9-dihexylfluorene)]-block-poly(2-vinylpyridine)(di-PFPVP) or triblock P2VP-b-PF-b-P2VP (tri-PFPVP) with polyethylene oxide (PEO) using a single-capillary spinneret. The morphology and photophysical properties of ES fibers were explored via the molecular architecture, solvent selectivity, and different molecular weights of PEO. The ES fibers had diameters around 400–800 nm using solvent of methanol (MeOH)/H2O while those using CHCl3 were around 1–3 μm, which was probably due to the difference on the solvent dielectric constant. Furthermore, the PF aggregated size and emission peak maximum in the ES fibers increased with enhancing the block copolymer composition using CHCl3. However, an insignificant variation was observed using MeOH/H2O. The larger PF aggregated size of the di-PFPVP/PEO blend ES fibers resulted in the red-shifting and broader emission peak, in comparison with that of the tri-PFPVP/PEO blend ES fibers. The efficient interaction of the PEO with the PVP block in two different block copolymers accounted for the above results. In the ES fibers using the low molecular weight of PEO (Mn~100 K), it exhibited a red-shifting on the PL spectra in comparison with the spin-coated films due to the geometrical confinement. Nevertheless, such confinement was probably significantly reduced using the high molecular weight PEO (Mn~2000 K) and thus an insignificant variation was found on the PL spectra. The present study demonstrated that their aggregate morphology and photophysical properties of ES fibers prepared from conjugated rod-coil block copolymer blends could be significantly tuned through polymer architecture, solvent selectivity, and copolymer composition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call