Abstract

AbstractZnO nanostructures were grown on Au‐coated Si (100) substrates by carbonthermal reduction method with the help of Ar at the beginning of growth. The structural and optical properties of ZnO nanostructures strongly depended on the supply time of Ar. When the given time of Ar gas current was 90s, sample was ZnO nanowires with hexagonal morphology. The Raman spectroscopy revealed the low level of oxygen vacancies and Zn interstitials in samples. Room temperature photoluminescence (PL) spectra exhibited the intensity of green emission increased on the condition of rich oxygen (decrease given time of Ar) and the nanowire had strongest intensity of UV emission compared with other nanostructures. Green emission is ascribed to the electron transition from the bottom of the conduction band to the antisite defect OZn level. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call