Abstract

AbstractPolymer solar cells were fabricated based on composite films of poly(2‐methoxy‐5‐(2′‐ethyl‐hexyloxy)‐1,4‐phenylenevinylene) (MEH‐PPV):fullerene derivative (6,6)‐phenyl‐C61‐butyric acid methyl ester (PCBM) with weight blend ratio of 1:3, 1:4 and 1:5, spin‐coated from chloroform (CF), chlorobenzene (CB), and o‐dichlorobenzene (ODCB) solutions, respectively. Photoinduced current and power conversion efficiency (PCE) of the devices show a dependence on the solvents. The solar cells have the highest PCE at 1:5 blend ratio. Transmission electron microscopy (TEM) morphology reveals that there are some voids in MEH‐PPV:PCBM films. The void number decreases with the solvent from CF to CB and ODCB. We found the voids are located at the bottom of the films through electron tomography technique by TEM and film bottom‐side morphology study by atomic force microscopy. The charge carrier transport efficiency and collection efficiency should decrease greatly due to the voids, and the more voids the film has, the more degree the efficiencies decrease. PCE of the solar cell prepared from CF is lower than that of the solar cells prepared from CB and ODCB. The void phenomenon of MEH‐PPV:PCBM based solar cell and method to investigate the void position provide an experimental evidence and research mentality to fabricate polymer solar cell with high performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.